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Within  the f r a m e w o r k  of  the B u c M e y - L e v e r e t t e  m o d e l ,  an a c c u r a t e  so lu t ion  i s  g iven  f o r  the 
p r o b l e m  of the  c o m b i n e d  f i l t r a t i o n  of  two i n c o m p r e s s i b l e  f lu ids  in  the c o u r s e  of  s u c c e s s i v e  
p u m p i n g  of one of  t h e m  a l t e r n a t i v e l y  into and out  of  a p o r o u s  c o l l e c t o r .  

The normal operation of underground gas stores is cyclic in character [i]. Each cycle consists of 
pumping a definite volume of gas into the bed and then removing it in an amount determined both by the re- 
qnirement for the gas and by the filtrational characteristics of the gas-saturation collector. The basic prob- 
lem of cyclic operation of an underground gas store is to elucidate how the store dimensions and the volume 
ratio of the gas pumped into and out of the bed change from cycle to cycle and how the volume of the so-called 
"trapped" gas, i.e., that which is inaccessible for removal, grows. In particular, the important question is 
whether the gas store works in steady conditions, i.e., conditions in which the dimensions of the gas store do 
not increase and the volume of gas pumped out is practically equal to the volume pumped in. 

In [2, 3], attempts were made to obtain answers to these questions by means of specific graphoanalytie 
constructions, but no general solution was obtained. The investigation of the cyclic use of an underground gas 
store undertaken here is based on the Buckley-Leverette model of two-phase filtration. Accurate solution of 
the problem is performed under the assumption that a definite volume of gas is pumped into the bed each time, 
and pumping out continues until the water front approaches the borehole. 

Consider the differential equation for the distribution of the saturation a (x, t) of one of the cofiltering 

fluids [4, 5] 

act m 8/((~) _ 0, (1) 
77l - -  ~- xv_ l  

dt 8x 

w h e r e  ~ = 1, 2, r e s p e c t i v e l y ,  f o r l i n e a r  and  r a d i a l  f low; f(cr) = k t (c r ) / [k t (a  ) + #0k2(a)] i s t h e  B u c k i e y - L e v e r e t t e  
funct ion .  A c h a r a c t e r i s t i c  f e a t u r e  of th i s  func t ion  i s  that  i t s  c u r v e  has  two p a r t s ,  one convex  and one concave ,  

s e p a r a t e d  by  a po in t  of i n f l e c t i on  a I  (Fig .  1). 

Suppose  tha t  the s a m e  vo lume  of  g a s  V i s  p u m p e d  into the  bed  in e a c h  cyc l e .  A s s u m e  that  w i s  cons tan t ;  
t hen  the  i n j e c t i o n  of  the  g a s  wi l l  a l w a y s  ex t end  o v e r  the s a m e  t ime  T. I n t r o d u c i n g  d i m e n s i o n l e s s  v a r i a b l e s  
a c c o r d i n g  to the  f o r m u l a s  ( = mxU/u wT and r = t /T ,  Eq. (1) m a y  a l so  be w r i t t e n  in d i m e n s i o n l e s s  f o r m  

Oa 8a (2) 
- -  + / '  (,~) = o .  

It may now be assumed that the dimensionless injection time is unity. Note that, if the process of displace- 
ment of water by gas is described by the function f (or), the inverse process of gas displacement by water is 

described by the function fi(cr) = 1 -f (I - cr), where f'(a) = fi'(l - cr). 

Equation (2) belongs to the class of hyperbolic quasilinear equations, and therefore has real character- 

istics. The equation of these characteristics and the conditions imposed upon them take the form 

d~ _/ , (~) ,  d~ _ o ,  (3) 
d~ dT 

and hence it follows that t h e y  are straight lines. Equation (2) may have discontinuous solutions, therefore at 
the lines of discontinuity it is necessary to impose relations between the limiting values of the saturation "be- 
fore" and "after" the discontinuity and relations expressing the mass balance of each of the phases [6]. In the 

given case, these relations are the same, and take the form 
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Fig. i. ]3uekley-Leverette function. 
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Fig. 2. Position of the characteristics and discontinuity lines on the ($, ~') plane; 
and r are the dimensionless coordinate and time. 
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where a + and a- are the saturations before and after the discontinuity, respectively. In addition, such dis- 
continuities must be stable [6]. 

The solution will now be constructed. The first injection of gas into the bed initially filled with water 
is described by Eq. (2) with the initial and boundary conditions a(~, 0) = 0, a(0, T) = i. The solution is cons- 
tructed in the region ~ -> 0, 0 < T ~ I. This is the ordinary Buckley-Leverette self-similar problem; its solu- 
tion consists of the discontinuity ~/T = f'(~ql), where all is the frontal saturation, determined by the abscissa 
of the point of tangency of the straight line drawn through the point (0; 0) to the Buckley curve f(a) (Fig. i) and 
the subsequent centered wave ~/~ = f'(~). Before the discontinuity the saturation a is zero. 

The picture of the characteristic and the position of the line of discontinuity are shown in the lower part 
of Fig. 2. The gas-store dimension l t after the first injection is determined by the relation l I = f'(all), whale 
the distribution of the saturation at the end of injection is found from the relation ~ = f'(~). 

When the gas is pumped out, the direction of filtration of the phases is reversed, and therefore, for the 

sake of convenience, the coordinate origin may be shifted to the point reached by the displacement front at the 
end of injection. Then, the withdrawal of the gas is described by the equation given above, with the difference 
that the gas saturation is replaced by the water saturation, and the function f(a) by the function fl(a). However, 
the problem of gas withdrawal is not self-similar. The distribution of the saturation formed in the bed at the 
end of injection a(l, ~) = a(~) characterizes the initial condition for the given equation 

h - -  ~ = h (s), 0 ~ ~ ~ zl. (5) 

H e r e  a E (0; 1 - an)  and,  in  addi t ion ,  (7(0, T) = 1, "r > 1. 

The d i s t r i b u t i o n  of s a t u r a t i o n  in  th i s  s tage  of the p r o c e s s  i s  a l so  found by the method  of c h a r a c t e r i s t i c s .  
It may readily be shown that all the characteristics leaving points of the initial straight line converge at a 
single point C (Fig. 2). This is explained in that the initial distribution in Eq. (5) is obtained from the solution 
of the same equation, which is a centered wave. It is necessary to construct a stable diseoritinuous transition 
from these characteristics at the value (7 = i). It consists of the discontinuity (AC) traveling over the region 
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Fig. 3. Compar i son  of the veloci ty  of the discontinuity and the p e r t u r -  
bations:  tan a = fT(a-~); tan  fl = D, D > f~(o--). 

Fig. 4. Geomet r i c  in te rpre ta t ion  of the r e su l t s  obtained. 

of convergent  c h a r a c t e r i s t i c s  and the subsequent cen te red  wave adjacent  to the boundary at  which the s a t u r a -  
t ion is  constant:  ~ = 1. It  is  obvious that  this discontinuity is  s table  [6]. F i r s t ,  it ove r t akes  all the c h a r ac -  
t e r i s t i c s  t r ave l ing  in front  of the discontinuity; In fact ,  the ra te  of such c h a r a c t e r i s t i c s ,  according  to Eq. (3), 
i s  de te rmined  by the values  of the der iva t ive  fi (or-) and the ra te  D of the discontinuity by Eq. (4). Since cr E (0; 
1 - all),  then D > fl(a-) (Fig. 3), i .e . , ,  the discontinuity i n t e r s e c t s  all  the c h a r a c t e r i s t i c s  proceeding f r o m  the 
interval(0;  ll). Hence,  it also follows that the t i m e  of withdrawal TOt, i .e . ,  the t ime  in which the sa tura t ion  
discontinui ty r e a c h e s  the borehole ,  i s  l e s s  than unity. Second, it may  be shown that  the discontinuity (AC) 
moves  m o r e  slowly than the pe r tu rba t ions  behind it, and the c h a r a c t e r i s t i c s  of the cen te red  wave lying behind 
it o v e r t a k e s  the discontinuity,  reducing i ts  velocity.  Thus,  the s tabi l i ty  condition of [6] is sat isf ied.  

The second gas  injection is  desc r ibed  by Eq. (2) in the p rev ious  r e f e r e n c e  f r ame .  This  p r o b l e m  is  also 
n o n - s e l f - s i m i l a r .  If  the value of the wa t e r  sa tura t ion  at  the momen t  at which the wa te r  front  (discontinuity) 
r e a c h e s  the borehole  is  denoted by r the initial  and boundary conditions fo r  this equation will take the f o r m  

1 1 - - [  : f ' ( c0 ,  c~E[0; 1--al~]; a(0, -~): l, T~127-~01. 
1 + ~0~ 

Thus ,  the p r o b l e m  is  found to be analogous to the p reced ing  one; spec i f ica l ly ,  in the in terval  (0; /t), t he re  is  
an init ial  distribt~tion of the sa tura t ion  obtained f r o m  the solution of the p r o b l e m  at the stage of gas  withdrawal 
in the p reced ing  cycle ,  i . e . ,  f r o m  the cen te red  wave subsequent to the discontinuity (AC). A discontinuity (CD) 
begins  to p ropaga te  f r o m  this  boundary  ~ = 0 (the borehole)  against  this  background; i ts  veloci ty he re  will be 
l a r g e r  than that  of the pe r tu rba t ions  preceding  it. Hence,  it follows that  the point ~ = l 1 is r eached  by the d i s -  
contimfity m o r e  rapidly  than c h a r a c t e r i s t i c s  s tar t ing  f r o m  points  of the in te rva l  (0; ll) converge at the point 
(/t; 1 + 2r01). Behind the discontinuity (CD), t he r e  moves  a cen te red  wave,  r a y s  of which over take  the d iscon-  
t inui ty  and slow it down (see Fig. 2). Since the inject ion t ime  (unity) is  l a r g e r  than the withdrawal t ime  rot the 
gas  f ront  does not stop at the point ~ = l t, but will move  fu r the r  and, ~t T = 2 + ~'0t, r e a c h e s  the point ~= l 2 

(/2 > /l)" In th is  case ,  the gas  sa tura t ion  preced ing  the discontinuity is  ze ro  in the in te rva l  (/t; 12), and i ts  m o -  
t ion is  descr ibed  by the o rd ina ry  di f ferent ia l  equation in Eq. (4), with cr + taken f r o m  the expres s ion  for  a cen-  
t e r e d  wave and ~ -  = 0. 

At th is  point,  it is  c l ea r  that  the solt~tions for  injection and withdrawal  in any cycle of opera t ion  of an 
underground gas  s tore  a r e  genera l .  Suppose that  li is  the d imension of the gas  s tore  in the i - th  cycle; cril is  
the f rontal  value of the gas sa tura t ion  af ter  the i - th  saturat ion;  ffi2 is the f rontal  value of the wa te r  sa tura t ion  
a f t e r  the i - th  withdrawal;  Ti2 is the durat ion of the i - th  withdrawal .  Then the de termining  re la t ions  take the 
form:  for  the n- th  inject ion (n > 1) 

- - +  
O~ 6[ 

n - - I  

= 0 ,  T - ~ n - - l @  Z T 0 ~ , O ~ / n - 1 : l , ~ _ ~ - - ~ = T O , n _ l f ' ( a ) ,  
f ~ l  

~ / . - ~ :  ~ (L 0) =- 0, 
/2--1 

T ~ n - - 1  4- Z %~, or(0, ~ )=  1; 

(6) 
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TABLE I. Cycle Change in the Parameters of an Underground Gas 

Store in Approaching Steady Conditions of Operation 

Cycle Rel. vol. of ReL rime of gas Frontal sat. after 'Frontal sat. after 
withdra~qal injection, withdrawal, NO. ,i ~as s t o r e , l i / l  1 roi~T0i~ ' ~, oi.. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 

1,00 0,54 
1 , 5 2  0,71 
1 , 8 8  0,81 
2, 14 0,88 
2,32 0,91 
2,46 0,94 
2,55 0,96 
2,63 0,97 
2,68 0,97 
2,72 0,98 
2,83 0,99 

2,92 1,00 

0,29 
0,27 
0,26 
0,25 
0,24 
0,24 
0,23 
0,23 
0,23 
0,23 
0,22 

0,21 

0,18 
0,18 
0,19 
0,19 
0,19 
0,19 
0,20 
0,20 
0,20 
0,20 
0,20 

0,21 

fo r  the n - t h  wi thd rawa l  (n - 1) 

n--I 

-ooO~ + ofra~ - O , ~ = n + ~ = ~ 0 z ,  O ~ l n : l ~ - - ~ = f ; ( ~ ) ,  (7) 

n--I 

�9 > n §  ~o~, a(O, ~)= i. 
i=l  

Since  the  s t r u c t u r e  of 'the solt~tion i s  known, l i m i t i n g  r e l a t i o n s  for  the g a s - s t o r e  p a r a m e t e r s  m a y  be ob -  

t a ined .  First of all, it is shown that 'the dimensions of the gas store do not increase without limit, but grow 
'to some value l, which is 'the limit of 'the sequence {In}. The terms of this monotonically increasing sequence 

is given by the equation I n = f'(ant ). The finiteness of the function f'(cr) means that this sequence is finite and 
hence has the limit l = lira l~. Note, in passing, that the sequence of values of the frontal gas saturation ffnt 

also has a limit. Since ffnl belongs to the interval (~I; i) in which f'(a) decreases monotonically, then the se- 
quence{oht } also decreases monotonically. It follows from the relation anl > a I that lim cs~ = c h ~ a~l- 

I'~ is now shown that the volume ratio of the gas pumped in and pumped out tends to unity. Note that, 

after the n-th injection, the gas volume V3, n in the plate is 

I n 

b i ds 

o r  

(7 ll t 

i' W" (~) d~ 
1 

V~,~ = ~.J '  (~n,) --  f (o~,) + 1. (8) 

The so lu t ion  of the  p r o b l e m  used  h e r e  i s  in  the f o r m  of a c e n t e r e d  wave for  which d ~ / d a  = f"(a). Since the 
s a m e  ga s  vo lume  (unity) i s  i n j e c t e d  into the bed in  each  cyc le ,  the gas  vo lume  V0n a f t e r  the n - t h  wi thdrawal  

i s  d e t e r m i n e d  as  the d i f f e r ence  of V3,n+ l and un i ty ,  tha t  i s  

, ~ ( 9 )  
Yon  = (Tn+l,  I f ( n@l ,  1 ) - -  f (Unq-l,  I ) '  

and the amount of gas withdrawn in the n-th cycle as the difference of V3, n and Vow Since lira ~i = lira %+i, ~= 

a t  and  the  func t ions  f and f '  a r e  con t inuous ,  ' then lira (V 3 n -  V0,,) = 1 and the a s s e r t i o n  has  been  p r oven .  Hence ,  

it follows, in particular, that the ratio of 'the durations of injection and withdrawal tends to unity, i.e., lira %~ = 

i. 

Next, ch = lira a,q is calculated, and it is shown to be equal to ffI, the abscissa of the poir~t of inflection 

of 'the Buckley-Leverette function. In this case, analogously 'to the derivation of Eq. (8), an expression is ob- 

tained for the gas volume V0n remaining in 'the bed after 'the n-th withdrawal 

I n 
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Since Von and TOn have l imi t s ,  and T0n--* 1, then the re  is  a l imi t  0.2 of the sequence 1 - r 
(9) and (10), i t  i s  found that  

Compar ing  Eqs.  

( i l )  (71f' (di) - -  .f (di) = (YJ' ((Y~) - -  f (~.~). 

S i n c e  1 - -  oh2 < ( r I ,  t h e n  ~2 -< q I ;  n o t e  t h a t  (r i >- q I -  

It  m a y  be es tab l i shed  f r o m  Eq. (11) thas ffl = if2 = 0.I" In fact ,  th is  equation has  a s imple  g e o m e t r i c  in-  
t e rp re t a t ion .  The expres s ion  of' (0.) - f(0.) d e t e r m i n e s  the length of the in t e r sec t  [OA] on the ordinate  fo rmed  
by the continuation of 'the 'tangent 'to 'the Buckley curve  drawn at a ce r t a in  point. Equation (11) r equ i r e s  that  
the points  BI(0. i) and B2(ff2) (Fig. 4) lie on th is  curve  in such a way tb_~t the tangents  drawn at these  points  f o r m  
'the s ame  ir~terseet on the ordinate .  I t  may  read i ly  be noted he re  that  the tangent (AB1) to the upper  pa r t  of the 
]3uckley curve  a lways  p a s s e s  Mgher  than the tangent  (AB2) to the lower  p a r t  (when ~i = 0.2, they coincide,  of 
course) .  Assume  t h ~  0.i r ~2, i .e . ,  0.2 < 0.i. Since, with a l te rnat ing  pumping,  a s table t r ans i t ion  f r o m  the 
sa tura t ion  value 0.2 before  'the discontinui ty to the value of unity a f t e r  the discontinuity is  achieved by a jump 
along the Buekley curve  f r o m  point B 2 to a point of sect ion [BiC] and subsequent  continuous motion along the 
cen te red  wave,  inabi l i ty  to draw a tangent  f r o m  poir~t ]32 to the given segment  of the Buckley curve  means  that  
'the a s sumpt ion  made has  led to a contradict ion.  Hence,  ~i = ~2. Taking into account  that  0.1 - 0.I and ~2 - 0.I, 

i t  follows that  0.i = ~2 = 0.I. 

Thus,  the s teady opera t ion  of an underground gas  s tore  is  c h a r a c t e r i z e d  by such p a r a m e t e r s  of the 
Buckley curve  as  0.I, f(0.I), and f'(0.i). At the same  t ime ,  the dynamics  of the t rans i t ion  of the gas  s tore  to 
s teady conditions of opera t ion  is  de t e rmined  by 'the behav ior  of 'this curve  ove r  'the whole range  of var ia t ion  

of 0.. 

The m o s t  significant  p a r a m e t e r s  of s teady opera t ion  of the gas  s tore  a r e  as follows. 

1. The l imit ing dimension of the gas  s to re  

l = f" ( ~ .  (12) 

This  r e su l t  i s  e spec ia l ly  impor tan t  fo r  exp lora t ive  work  to de te rmine  the poss ib i l i t i e s  of a p a r t i c u l a r  bed fo r  
use  as  an underground gas  s to re ,  and also in ca lcula t ions  of the amount  of gas  which may  be s tored  there .  

2. The vo lume of the ' t rapped - i .e . ,  i nacces s ib l e  for  r e m o v a l  - gas  actual ly  consumed in crea t ing  the 

gas  s tore  

v0 = ~ff '  ( ~ I ) -  t (~i). (13) 

This  value is  r e p r e s e n t e d  g raph ica l ly  by the i n t e r s e c t  [OA] (Fig. 4). 

3. The ex t rac t ion  coeff icient  q~ (the volume ra t io  of the gas  ex t rac ted  and the gas  stored) 

1 1 (14) 
( p  - -  _ _  - -  

1 +Vo 1 -~ Oil' ( d I ) - -  f (dI) 

This  coefficient  i s  'the eff ic iency index of the opera t ion  of 'the underground gas  shore. 

4. The mean  gas  sa tura t ion  a f t e r  inject ion r 1 and withdrawal 0" 2 

_~ = o i J ' ( ~ i : ) - - t ( ~ i ) d -  1 ; -~  = o i f ' ( o ] ) - - f ( ~ I )  (15) 
[ '  (oi) f' (~I) 

The dynamics  of g a s - s t o r e  depa r tu re  to s teady conditions of opera t ion  is  de te rmined ,  as  a l r eady  noted, 
by 'the specif ic  f o r m  of the Buekley function. This  p r o c e s s  i s  c h a r a c t e r i z e d  by a sequence of t i m e s  1"0i and 
hence 'the vo lumes  of gas  withdrawn f r o m  cycle to cycle .  These  quant i t ies  have been calculated on a compute r  
by in tegra t ion  of o rd ina ry  differer~tial Eq. (4). The exper imenta l  curve  of [7] was  used  as  the Buckley function. 
The l imi t ing  d imension  l of the gas  s to re  in 'this case  is  8.72 ( l / l  i = 2.92, i .e . ,  the gas  s to re  may  be i n c r e a s e d  
by no m o r e  'than a f a c t o r  of 2.92 in compar i son  with 'the f i r s t  injection); 'the ex t rac t ion  coefficient  ~ = 0.41; the 
mean  gas  sa tu ra t ions  ~i = 0.28, ~ = 0.17. The sequence of ~'0i fo r  a few cycles  is  given in Table 1, f r o m  which 
it  i s  evider~t 'that 'the d i f ference  between 'the withdrawal  and 'the inject ion t ime  b e c o m e s  l e s s  than 3% in approx i -  

ma t e ly  the eighth cycle  of g a s - s t o r e  opera t ion.  

NOTATION 

0., sa tura t ion  of one of the cof i l ter ing fluids (gas o r  water) ;  m ,  poros i ty ;  w, total  specif ic  f i l tr~tional 
flow r~te;  f(0.), f i ( c r ) , B u c k l e y - L e v e r e t t e  function; ki(r k2(ff), r e la t ive  phase  pe rmeab i l i t i e s ;  /~0, v i scos i ty  
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ratio of phases; cr I, abscissa of the poh-zt of inflection of the Buckley function; V, gas volume injected into the 
bed; T, duration of pumping; T0i, duration of i-th gas withdrawal; t, time; x, spatial variable; ~", dimension- 
less time; ~, dimensionless spatial coordinate. 
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TWO TYPES OF HE AT 

THERMAL MEMORY 
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TRANSFER IN MEDIA W I T H  

UDC 536.24 

I t  i s  shown that  media  with t h e r m a l  m e m o r y  can be grouped into two c l a s se s ,  based  on d i f f e r -  
er~t types  of heat  t r a n s f e r .  In med ia  of the f i r s t  c l a s s ,  the heat  propagat ion  veloci ty  is  infinite, 
while in the second c l a s s ,  i t  is  f inite.  This di f ference is  r espons ib le  fo r  the pecu l i a r i t i e s  of 
the soh~tions of the heat -conduct ion  p r o b l e m  in the two c l a s se s .  

Cur ren t ly  in the study of h e a t -  and mass -~ t rans fe r  p r o c e s s e s  under ex t r eme  conditions (low o r  ve ry  high 
t e m p e r a t u r e s ) ,  the m~them~t ica l  fo rmula t ion  of heat  conduction and m a s s  exchange is  used including d i f fe r -  
ential  m e m o r y  of the m ed i um  [1-4, 7-9]. A l i n e r a r i z e d  heat -conduct ion equation of th is  kind was f i r s t  ob-  
ta ined  in [8]; i t  d e s c r i b e s  heat  t r a n s f e r  with a finite heat  p ropaga t ion  veloci ty  [8, 9]. In the der ivat ion of a 
s i m i l a r  hea t -conduct ion  equation in [2], a diiferer~t, m o r e  genera l  f o r m  of the l inear ized  in tegra l  h e a t - t r a n s -  
f e r  re la t ion  was  used,  which includes the ins tantaneous values  X (0) and c(0) of the re laxa t ion  functions for  the 
heat  flux and the in terna l  energy.  Then med ia  with t r ans i en t  t h e r m a l  m e m o r y  can na tura l ly  be divided into 
two c l a s se s :  those  with the ins tantaneous  value k (0) > 0 (Four i e r  media) and those  with k (0) = 0 (MaxweIlian 
media) .  It  was  also shown in [2] that  the Nunzia toheat -conduct ion equst ionwith  ~ (0) = 0 can be reduced  to the 
P i p k i n - C u r t i n  equation [8] and hence in th is  type of medium,  heat  p ropaga tes  with a finite velocfty.  I t  is  
shown below that  in a F o u r i e r  med ium,  heat  i s  t r a n s f e r r e d  with an infinite velocity. Using the method of so lv-  
ing the he , t - conduc t ion  p r o b l e m  fo r  the Nunziato equation worked out in [4], we desc r ibe  the heat -conduct ion 
behav io r  fo r  smal l  va lues  of the t ime in both types  of  media .  The r e s u l t s  a r e  applied to the dis t r ibut ion func-  
t ion of an ins tat~taneous point sou rce  and this  a l lows one to deduce the type of heat  propagat ion  and aiso the 
qual i ta t ive f e a tu r e s  of the solution for  each  type of medium.  

We cons ider  the in tegrodif ferent ia l  heat -conduct ion equation fo r  the function u(t, M) = T(t, M) - T(0, M) 
desc r ib ing  the l inea r i zed  t r a n s f e r  p r o c e s s  with t r ans i en t  t h e r m a l  m e m o r y  as  fo rmula ted  by Nunziato [2]: 

o i (0) Ou ~(O) Au-~- ~ [  ~ dc~l-('c)~ cDtt (t ~-T, M) d~l (~) h u ( t - -~ ,  /vi)] d~ b(t, N ) ,  (1) 
ao Ot J[ a o cl'~ Ot d'~ j ~o 
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